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naphtho-fused thiophenes using arylthioacetamides
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New indeno- and naphtho-fused thiophenes were synthesized from reaction of 2-bromo-1-indanone
and 2-bromo-1-tetralone with arylthioacetamides in good yields.

Keywords: Tetra substituted thiophenes; 2-Aminothiophenes; Thioamides; Interamolecular conden-
sation

1. Introduction

Thiophene derivatives are important chemical building blocks. A variety of molecules
containing the thiophene ring display a wide range of biological activity and find applications
as pharmaceuticals [1]. Highly substituted thiophenes have attracted a great deal of interest,
due to their presence in natural products [2], as novel conducting polymers [3, 4], isosteric
replacements for phenyl group in medicinal chemistry [5] and as optical chromophores [6].

However, the synthesis of highly substituted thiophenes is restricted by the lack of enough
available methods to construct the desired ring bearing functionality in a controlled fashion.
The most convenient method for preparing thiophene with a high degree of functionality is by
the Gewald method in which elemental sulfur is reacted with an activated acetonitrile and an
aldehyde, ketone or 1,3-dicarbonyl compound in the presence of a base [7]. A modification
of the Gewald method has been reported in which an alkoxyacetone is reacted with ethyl
cyanoacetate, sulfur and morpholine producing most sources of alkoxy thiophene derivatives
in poor yields (19–39%) [8].

Recently syntheses of substituted thiophenes based on Pd-catalyzed cycloisomerization of
Z-2-en-4-yne-1-thiols have been reported [9]. But this procedure suffers from poor substituents
tolerance and reaction needs an expensive catalyst. New and improved methodologies have
also been developed [10, 11].

Thioamides have been used as useful synthons in the substrates of heterocycles [12–14].
The tertiary thioamides having an activated methylene group could react with α-halo carbonyl
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compounds in the presence of a base leading to the synthesis of 2-aminothiophene derivatives.
For example, thioacetamides in benzene react with α-bromoketones in the presence of DBU
yielding 2-amino-3-nitrothiophene [15]. These reactions are restricted to the tertiary nitro
thioacetamides as starting materials. Earlier we have reported a simple microwave-induced
method for the preparation of thiomorpholides including aryl thioacetomorpholides [16, 17].
The availability of such thiomorpholides provided a unique opportunity of examining their
synthetic utility.

On the other hand, recently a versatile one-pot synthesis of trisubstituted thiophenes from
thiomorpholides via S-Claisen rearrangement has been reported [18]. In continuation of the
research in this area [19, 20] and aiming to find new biologically active thiophene heterocyclic
compounds, such as 2-aminothiophene derivatives, the authors report their results on the
reaction of aryl thioamides with 2-bromo-1-indanone and 2-bromo-1-tetralone (scheme 1).

When thioamide 2 was treated with 1 in toluene and stirred for 6–10 h at 80 ◦C in the
presence of anhydrous K2CO3, the highly substituted 2-aminothiophenes were obtained in
good yields. Several examples have been investigated and table 1 summarizes the results.

SCHEME 1

Table 1. Synthesis of indane and tetralane fused thiophenes using thioamides.

Entry n X Ar Product Time (h) Yield (%)a

a 1 O 8 64

b 1 O 8 57

(continued)
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Table 1. Continued.

Entry n X Ar Product Time (h) Yield (%)a

c 1 O 8 64

d 1 O 8 72

e 1 O 6 75

f 1 CH2 7 77

g 1 CH2 7 84

hb 1 O 10 42

i 2 O 7 63

j 2 O 7 60

(continued)
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Table 1. Continued.

Entry n X Ar Product Time (h) Yield (%)a

k 2 O 7 71

l 2 CH2 6 83

m 2 CH2 6 90

aIsolated yield.
bReaction temperature was 110 ◦C.

A mechanism is proposed for the reaction course and is shown in scheme 2.
Arylthioacetamides undergoes first an S-alkylation with haloketone, then subsequent inter-
amolecular aldol-type condensation and finally dehydration which could be supported by the
literature analogy [21].

The products were characterized by spectroscopic methods (1H-NMR, 13C-NMR, DEPT
90, DEPT 135 and GC-MS). Interestingly, in 1H-NMR of compounds (a–g) the benzylic CH2

group appears as a singlet for all compounds except for compound h which shows an AB
Pople’s system (figure 1).

This observation may suggest that one of the hydrogens of CH2 should be spatially closer
to the naphthyl group and thus it experiences more anisotropic effect from naphthyl group.
The simulation performed by “CS Chem 3D Pro 5.0”, confirms this suggestion (figure 1).

Synthesis of tetra-substituted thiophenes proceeded more conveniently using thioamides
with heteroaromatic substitutes such as pyridyl (entries 3e, 3g, 3m, table 1) in high yields and
short reaction times. Thiophenes contained the pyridyl substituent are interesting compounds
in organic chemistry.

SCHEME 2
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Figure 1. The 1H-NMR of benzylic CH2 for compounds a and h with structure of compound h.

In conclusion, we have developed an efficient and simple method for preparation of highly
substituted 2-aminoindane and 2-aminotetralane fused thiophenes. The generality of the
method has been demonstrated by the successful conversion of thirteen substrates into fully
substituted 2-aminothiophenes in good yields. These materials have the potential to be used
as new reagents for synthesis of heterocyclic compounds. The methodology described here
seems to be the simplest one for the synthesis of these compounds.

2. Experimental

The compounds all gave satisfactory spectroscopic data. A Bruker (DRX-500 Avanes) NMR
was used to record the 1H-NMR, 13C-NMR and DEPT 90 and DEPT 135 spectra. All NMR
spectra were determined in CDCl3 at ambient temperature. Melting points were determined
on a Buchi B540 apparatus. GC-MS (EI), 70 ev, HP6890 Column: HP-5 (30 m × 0.25 mm ×
0.2 uml MSD: HP5793) was used to record the mass spectra.

2.1 Preparation of thiophenes (3a–3m)

To a stirred solution of a thioamide [16, 17] (4 mmol) in toluene (5 ml), anhydrous K2CO3

(0.552 g. 4 mmol) was added. Then a solution of 2-bromo-1-indanone or 2-bromo-1-tetralone
[22] (4 mmol) in toluene (2 ml) was added dropwise over 10 min. The reaction mixture was
heated at 80 ◦C for about 6–10 hours. Then, the solvent was evaporated and the residue
was subjected to column chromatography (EtOAc/Hexane; 1:4 on silica gel) to obtain pure
products.
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2.2 Spectroscopic data for compounds (3a–3m)

2.2.1 4-(3-Phenyl-8H-indeno[2,1-b]thien-2-yl)morpholine (3a). Light yellow solid.
Mp: 156–158 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.65 (d, J = 8.9 Hz, 2H), 7.53–7.49 (m,
3H), 7.43 (t, J = 5.7 Hz, 1H), 7.21–7.15 (m, 3H), 3.86 (s, 2H), 3.72 (t, J = 4.6 Hz, 4H), 2.69 (t,
J = 4.6 Hz, 4H). 13C-NMR (125 MHz, CDCl3): δ = 156.1(C), 146.3(C), 143.9(C), 140.3(C),
135.6(C), 135.5(C), 130.2(CH), 128.8(CH), 127.6(CH), 126.7(CH), 125.4(C), 124.9(CH),
124.7(CH), 119.9(CH), 67.1(CH2), 54.2(CH2), 35.5(CH2). MS (EI) m/z: 333 (M+, 100), 274
(30), 202 (7), 136 (7).

2.2.2 4-(3-p-tolyl-8H-indeno[2,1-b]thien-2-yl)morpholine (3b). Light yellow solid. Mp:
159–161 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 7.8 Hz, 2H), 7.48 (t, J = 7.8 Hz,
1H), 7.31 (d, J = 7.8 Hz, 2H), 7.23–7.14 (m, 3H), 3.84 (s, 2H), 3.71 (t, J = 4.5 Hz, 4H), 2.94
(t, J = 4.5 Hz, 4H), 2.48 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 156.8(C), 146.3(C),
144.0(C), 140.5(C), 137.0(C), 135.2(C), 132.6(C), 130.1(CH), 129.4(CH), 126.6(CH),
125.2(C), 124.7(CH), 124.5(CH), 119.9(CH), 67.3(CH2), 54.1(CH2), 35.5(CH2), 21.8(CH3).
MS (EI) m/z: 347 (M+, 100), 288 (27), 256 (12), 202 (9), 136 (11).

2.2.3 4-{3-(4-chloro Phenyl)-8H-indeno[2,1-b]thien-2-yl}morpholine (3c). Light yel-
low solid. Mp: 192–194 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.58 (d, J = 6.5 Hz, 2H),
7.51–7.48 (m, 3H), 7.20–7.16 (m, 3H), 3.58 (s, 2H), 3.72 (t, J = 4.6 Hz, 4H), 2.93 (t,
J = 4.6 Hz, 4H). 13C-NMR (125 MHz, CDCl3): δ = 157.4(C), 146.2(C), 143.5(C), 140.1(C),
135.7(C), 134.1(C), 133.2(C), 131.5(CH), 128.9(CH), 126.7(CH), 124.9(CH), 124.7(CH),
124.1(C), 119.7(CH), 67.2(CH2), 54.2(CH2), 35.5(CH2). MS (EI) m/z: 369 (M+2, 35), 367
(M+, 100), 308 (25), 274 (12), 256 (12), 202 (9).

2.2.4 4-{3-(1-biphenyl-4-yl)-8H-indeno[2,1-b]thien-2-yl}morpholine (3d). Light yel-
low solid. Mp: 168–170 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.78–7.72 (m, 6H), 7.55–7.41
(m, 4H), 7.32 (t, J = 5.5 Hz, 1H), 7.18–7.16 (m, 2H), 3.87 (s, 2H), 3.74 (t, J = 4.6 Hz, 4H),
2.98 (t, J = 4.6 Hz, 4H). 13C-NMR (125 MHz, CDCl3): δ = 157.3(C), 146.3(C), 143.8(C),
141.1(C), 140.4(C), 140.0(C), 135.5(C), 134.7(C), 130.6(CH), 129.3(CH), 127.7(CH),
127.4(CH), 127.2(CH), 126.7(CH), 124.9(C), 124.8(CH), 124.6(CH), 120.0(CH), 67.3(CH2),
54.2(CH2), 35.6(CH2). MS (EI) m/z: 409 (M+, 100), 350 (28), 323 (11), 256 (10).

2.2.5 4-{3-(4-pyridyl)-8H-indeno[2,1-b]thien-2-yl}morpholine (3e). Light yellow solid.
Mp: 183–185 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 8.76 (d, J = 6 Hz, 2H), 7.61 (d, J =
6 Hz, 2H), 7.51 (t, J = 3 Hz, 1H), 7.30–7.18 (m, 3H), 3.85 (s, 2H), 3.73 (t, J = 4.6 Hz, 4H),
2.93 (t, J = 4.6 Hz, 4H). 13C-NMR (125 MHz, CDCl3): δ = 158.9(C), 150.3(CH), 146.2(C),
144.0(C), 142.8(C), 139.7(C), 136.5(C), 126.8(CH), 125.1(CH), 125.0(CH), 124.8(CH),
122.7(C), 119.7(CH), 67.1(CH2), 54.4(CH2), 35.5(CH2). MS (EI) m/z: 334 (M+, 100), 275
(30), 248 (20), 137 (9).

2.2.6 4-(3-Phenyl-8H-indeno[2,1-b]thien-2-yl)piperidine (3f). Light yellow solid. Mp:
125–127 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 6.9 Hz, 2H), 7.54–7.49 (m,
3H), 7.41 (t, J = 6.2 Hz, 1H), 7.28 (t, J = 4.1 Hz, 1H), 7.18 (d, J = 4.2 Hz, 1H), 7.15
(d, J = 4.1 Hz, 1H), 3.85 (s, 2H), 2.91 (t, J = 5.3 Hz, 4H), 1.62–1.50 (m, 6H). 13C-
NMR (125 MHz, CDCl3): δ = 146.4(C), 143.6(C), 140.7(C), 136.1(C), 134.9(C), 130.4(C),
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130.2(CH), 128.5(CH), 127.1(CH), 126.6(CH), 124.8(CH), 124.4(CH), 124.3(C), 119.9(CH),
55.5(CH2), 35.6(CH2), 26.4(CH2), 24.2(CH2). MS (EI) m/z: 331 (M+, 100), 288 (7), 274 (27),
254 (19), 221 (20), 202 (14).

2.2.7 4-{3-(4-pyridyl)-8H-indeno[2,1-b]thien-2-yl}piperidine (3g). Light yellow solid.
Mp: 193–195 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 8.76 (m, 2H), 7.65 (d, J = 4.0 Hz,
2H), 7.50 (t, J = 3.5 Hz, 1H), 7.29 (t, J = 4.9 Hz, 1H), 7.19 (m, 2H), 3.84 (s, 2H),
2.88 (t, J = 5.2 Hz, 4H), 1.59 (d, J = 4.8 Hz, 4H), 1.52 (d, J = 4.8 Hz, 2H). 13C-NMR
(125 MHz, CDCl3): δ = 161.0(C), 150.1(CH), 146.3(C), 144.3(C), 142.6(C), 140.0(C),
135.9(C), 126.8(CH), 125.1(CH), 124.9(CH), 124.8(CH), 121.7(C), 119.7(CH), 55.7(CH2),
35.5(CH2), 26.3(CH2), 24.1(CH2). MS (EI) m/z: 332 (M+, 100), 275 (23), 254 (17), 221 (15).

2.2.8 4-{3-(1-naphthyl)-8H-indeno[2,1-b]thien-2-yl}morpholine (3h). Light yellow
oil. 1H-NMR (500 MHz, CDCl3): δ = 7.97 (m, 2H), 7.84 (d, J = 8.5 Hz, 1H), 7.64–7.61
(m, 2H), 7.54 (t, J = 8.1 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.40 (t, J = 8.1 Hz, 1H), 7.07 (t,
J = 7.4 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 6.34 (d, J = 7.6 Hz, 1H), 3.94 (d, J = 20 Hz, 1H,
AB system), 3.88 (d, J = 20 Hz, 1H, AB system), 3.52–3.49 (m, 4H), 2.93–2.89 (m, 4H). 13C-
NMR (125 MHz, CDCl3): δ = 157.8(C), 146.1(C), 145.2(C), 140.3(C), 134.2(C), 134.1(C),
133.7(C), 132.5(C), 128.6(CH), 128.4(CH), 128.2(CH), 126.9(CH), 126.6(CH), 126.4(CH),
126.3(CH), 125.9(CH), 124.6(CH), 124.4(CH), 122.0(C), 119.7(CH), 67.1(CH2), 53.8(CH2),
35.6(CH2). MS (EI) m/z: 383 (M+, 100), 324 (26), 310 (5), 297 (10), 277 (4), 265 (4), 252 (7).

2.2.9 4-(1-phenyl-4,5-dihydronaphtho[2,1-b]thien-2-y1)morpholine (3i). Light yellow
solid. Mp: 165–167 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.43–7.36 (m, 5H), 7.23 (d, J =
7.4 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 3.66
(t, J = 4.5 Hz, 4H), 3.04 (t, J = 6.8 Hz, 2H), 2.90 (t, J = 6.8 Hz, 2H), 2.85 (t, J = 4.5 Hz,
4H). 13C-NMR (125 MHz, CDCl3): δ = 151.9(C), 137.1(C), 136.1(C), 132.7(C), 132.6(C),
131.8(C), 130.5(CH), 129.6(C), 128.7(CH), 128.3(CH), 127.2(CH), 126.4(CH), 126.1(CH),
125.2(CH), 67.3(CH2), 54.2(CH2), 30.7(CH2), 24.9(CH2). MS (EI) m/z: 347 (M+, 100), 345
(10), 288 (16), 260 (5), 215 (3).

2.2.10 4-{1-(4-chlorophenyl)-4,5-dihydronaphtho[2,1-b]thien-2-y1)morpholine (3j).
Light yellow solid. Mp: 131–133 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.45–7.35 (m, 4H),
7.23 (d, J = 7.3 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.95 (d,
J = 7.8 Hz, 1H), 3.67 (t, J = 4.5 Hz, 4H), 3.02 (t, J = 6.8 Hz, 2H), 2.88 (t, J = 6.8 Hz, 2H),
2.83 (t, J = 4.5 Hz, 4H). 13C-NMR (125 MHz, CDCl3): δ = 171.7(C), 152.3(C), 136.2(C),
135.4(C), 133.0(C), 132.5(C), 132.4(C), 131.9(CH), 130.0(C), 128.9(CH), 128.4(CH),
126.5(CH), 126.3(CH), 125.1(CH), 67.3(CH2), 54.3(CH2), 30.6(CH2), 24.8(CH2). MS (EI)
m/z: 383 (M+2, 33), 381 (M+, 100), 379 (9), 322 (9), 288 (14), 258 (10).

2.2.11 4-(1-Biphenyl-4-yl-4,5-dihydronaphtho[2,1-b]thien-2-y1)morpholine (3k).
Light yellow solid. Mp: 191–193 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.75 (d, J = 7.8 Hz,
2H), 7.70 (d, J = 8.2 Hz, 2H), 7.59–7.47 (m, 4H), 7.41 (t, J = 7.4 Hz, 1H), 7.25 (d,
J = 7.4 Hz, 1H), 7.07 (t, J = 7.4, 1H), 6.92 (t, J = 7.6, 1H), 6.77 (d, J = 7.8, 1H), 3.68
(t, J = 4.4 Hz, 4H), 3.05 (t, J = 6.8 Hz, 2H), 2.90–2.87 (m, 6H). 13C-NMR (125 MHz,
CDCl3): δ = 152.1(C), 144.9(C), 141.1(C), 139.6(C), 136.2(C), 136.0(C), 132.7(C), 132.0(C),
130.9(CH), 129.2(CH), 129.1(C), 128.3(CH), 127.7(CH), 127.3(CH), 127.2(CH), 126.5(CH),
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126.1(CH), 125.3(CH), 67.3(CH2), 54.2(CH2), 30.6(CH2), 24.9(CH2). MS (EI) m/z: 423
(M+, 100), 421 (14), 364 (14).

2.2.12 4-(1-phenyl-4,5-dihydronaphtho[2,1-b]thien-2-y1) piperidine (3l). Light yel-
low solid. Mp: 110–112 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 7.43–7.33 (m, 5H), 7.23 (d,
J = 7.3 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H),
3.03 (t, J = 6.8 Hz, 2H), 2.86 (t, J = 6.8 Hz, 2H), 2.80 (t, J = 4.6 Hz, 4H), 1.56–1.46 (m,
6H). 13C-NMR (125 MHz, CDCl3): δ = 153.9(C), 137.4(C), 136.2(C), 133.0(C), 132.5(C),
131.5(C), 130.6(CH), 128.9(C), 128.5(CH), 128.3(CH), 127.0(CH), 126.5(CH), 125.9(CH),
125.2(CH), 55.6(CH2), 30.8(CH2), 26.4(CH2), 25.0(CH2), 24.3(CH2). MS (EI) m/z: 345 (M+,
100), 343 (17), 288 (4), 215 (5).

2.2.13 4-(1-(4-pyridyl)-4,5-dihydronaphtho[2,1-b]thien-2-y1)piperidine (3 m). Light
yellow solid. Mp: 187–189 ◦C. 1H-NMR (500 MHz, CDCl3): δ = 8.65 (d, J = 6.0 Hz, 2H),
7.40 (d, J = 6.0 Hz, 2H), 7.24 (d, J = 7.4 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.93 (t, J = 7.6,
1H), 6.66 (d, J = 7.8 Hz, 1H), 3.01 (t, J = 6.8 Hz, 2H), 2.84 (t, J = 6.8 Hz, 2H), 2.78 (t,
J = 4.6 Hz, 4H), 1.55–1.48 (m, 6H). 13C-NMR (125 MHz, CDCl3): δ = 155.6(C), 150.1(CH),
145.5(C), 136.2(C), 132.8(C), 132.2(C), 131.8(C), 128.5(CH), 126.5(CH), 126.3(CH),
126.2(CH), 125.6(C), 125.2(CH), 55.9(CH2), 30.6(CH2), 26.3(CH2), 24.9(CH2), 24.1(CH2).
MS (EI) m/z: 346 (M+, 100), 345 (22), 289 (4), 230 (6).
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